Fast Marginal Likelihood Maximisation for Sparse Bayesian Models

نویسندگان

  • Michael E. Tipping
  • Anita C. Faul
چکیده

The ‘sparse Bayesian’ modelling approach, as exemplified by the ‘relevance vector machine’, enables sparse classification and regression functions to be obtained by linearly-weighting a small number of fixed basis functions from a large dictionary of potential candidates. Such a model conveys a number of advantages over the related and very popular ‘support vector machine’, but the necessary ‘training’ procedure — optimisation of the marginal likelihood function — is typically much slower. We describe a new and highly accelerated algorithm which exploits recently-elucidated properties of the marginal likelihood function to enable maximisation via a principled and efficient sequential addition and deletion of candidate basis functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Sparse Bayesian Learning

The recent introduction of the 'relevance vector machine' has effectively demonstrated how sparsity may be obtained in generalised linear models within a Bayesian framework. Using a particular form of Gaussian parameter prior , 'learning' is the maximisation, with respect to hyperparameters, of the marginal likelihood of the data. This paper studies the properties of that objective function, an...

متن کامل

Sparse Bayesian kernel logistic regression

In this paper we present a simple hierarchical Bayesian treatment of the sparse kernel logistic regression (KLR) model based MacKay’s evidence approximation. The model is re-parameterised such that an isotropic Gaussian prior over parameters in the kernel induced feature space is replaced by an isotropic Gaussian prior over the transformed parameters, facilitating a Bayesian analysis using stan...

متن کامل

The evidence framework applied to sparse kernel logistic regression

In this paper we present a simple hierarchical Bayesian treatment of the sparse kernel logistic regression (KLR) model based on the evidence framework introduced by MacKay. The principal innovation lies in the re-parameterisation of the model such that the usual spherical Gaussian prior over the parameters in the kernel induced feature space also corresponds to a spherical Gaussian prior over t...

متن کامل

Comparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome

Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data.   Methods: This study use...

متن کامل

An Empirical-Bayes Score for Discrete Bayesian Networks

Bayesian network structure learning is often performed in a Bayesian setting, by evaluating candidate structures using their posterior probabilities for a given data set. Score-based algorithms then use those posterior probabilities as an objective function and return the maximum a posteriori network as the learned model. For discrete Bayesian networks, the canonical choice for a posterior scor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003